«

Mastering Data Cleaning in Python: A Guide using Pandas Library

Read: 4724


Original Chinese Article:

如何在Python中使用Pandas进行数据清洗

在数据分析过程中,数据清洗是至关重要的步骤。使用Python的pandas库可以帮助我们更有效地执行这一任务。

在Python中使用pandas进行数据清洗主要通过四个步骤:

  1. 导入库

首先,我们需要导入pandas库,并创建一个DataFrame来存储我们的数据。


   import pandas as pd

   data = 'Name': 'John', 'Mary', 'Tom',

           'Age': 30, 25, 40,

           'Salary': 50000, 60000, 70000

   df = pd.DataFramedata
  1. 数据检查

在数据清洗过程中,第一步是检查DataFrame中的任何缺失值或错误。


   # 检查是否有空值

   printdf.isnull.sum
  1. 处理数据

一旦检测到问题,我们可以采取行动来解决它们。对于缺失值,可以删除包含缺失值的行或列,或者用平均值、中位数或其他方法填充。


   # 删除具有任何空值的行

   df_clean = df.dropna

   # 或者填充缺失值(例如使用中位数)

   df'Age'.fillnadf'Age'.median, inplace=True
  1. 数据验证

完成清洗后,需要再次检查数据以确保所有问题已得到解决。


   # 再次进行空值检查

   printdf_clean.isnull.sum

通过遵循这四个步骤,可以有效地使用Python和pandas库对数据进行清洗。这个过程不仅提高了数据分析的效率,还可以减少在进一步处理之前可能存在的错误。

How to Perform Data Cleaning in Python using Pandas

Data cleaning plays a pivotal role of data analysis. Leveraging Python's pandas library can streamline this task significantly.

Here are four mn steps for data cleaning when using pandas:

  1. Library Import:

Firstly, import the pandas library and create a DataFrame to store your dataset.


   import pandas as pd

   data = 'Name': 'John', 'Mary', 'Tom',

           'Age': 30, 25, 40,

           'Salary': 50000, 60000, 70000

   df = pd.DataFramedata
  1. Data Inspection:

The initial phase involves checking for any missing values or errors in the DataFrame.


   # Check if there are any null values

   printdf.isnull.sum
  1. Handling Data Issues:

Once issues are identified, action can be taken to address them. For missing data, rows contning such values could be removed, or missing values could be replaced with means, medians, or other methods.


   # Remove rows with any null values

   df_clean = df.dropna

   # Alternatively, fill missing values for example using the median

   df'Age'.fillnadf'Age'.median, inplace=True
  1. Data Validation:

After cleaning, it's essential to recheck that all issues have been resolved.


   # Perform a second check for null values

   printdf_clean.isnull.sum

By adhering to these four steps, you can effectively use Python and pandas library for data cleaning. This process not only boosts the efficiency of your data analysis but also ensures that subsequent processing is free from potential errors.

Please let me know if there's anything else I can assist with!
This article is reproduced from: https://famfocuseye.com/perfect-pair-of-eyeglasses/

Please indicate when reprinting from: https://www.89vr.com/Eyewear_contact_lenses/Data_Cleaning_with_Pandas_in_Python.html

Python Pandas Data Cleaning Techniques Efficient Data Cleaning with Pandas Library Missing Value Handling in Pandas Comprehensive Guide to DataFrame Inspection Pandas Method for Data Validation Step by Step Approach to Data Cleaning